

Environmental Product Declaration

Statement of Verification

CARES EPD No.: 0048

Issue 01

This is to verify that the

Environmental Product Declaration

Provided by:

Watani Iron Steel Limited Co.

Is in accordance with the requirements of:

EN ISO 14025:2010 and EN 15804:2012 + A2:2019/AC2021

and CARES PCR for Type III EPD of Semi-Finished and Finished Steel Products, February 2025

This declaration is for:

Carbon Steel Reinforcing Bar (Secondary production route - Scrap)

Company address:

3719 al Kharj Old - Hyt Dist.
Unit no 1
Riyadh, 14371-6448
Kingdom of Saudi Arabia

LadinCamci

Ladin Camci

05 February 2026

Signed for CARES

Operator

Date of this Issue

05 February 2026

04 February 2029

First Issue Date

Expiry Date

The validity of this Environmental Product Declaration can be verified by contacting CARES on +44 (0)1732 450 000 or visiting CARES website <https://www.caresscertification.com/certification-schemes/environmental-product-declarations>.

CARES, Pembroke House, 21 Pembroke Road, Sevenoaks, Kent TN13 1XR

Environmental Product Declaration

Environmental Product Declaration

EPD Number: CARES EPD 0048

General Information

EPD Programme Operator	CARES Pembroke House, 21 Pembroke Road, Sevenoaks, Kent, TN13 1XR UK www.carescertification.com
Applicable Product Category Rules	CARES Product Category Rules (PCR) for Type III Environmental Product Declaration (EPD) of Semi-Finished and Finished Steel Products, February 2025
Commissioner of LCA study	CARES Pembroke House, 21 Pembroke Road, Sevenoaks, Kent, TN13 1XR UK www.carescertification.com
LCA consultant/Tool	CARES EPD Tool version 3.0 SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park, Gallows Hill, Warwick, Warwickshire CV34 6UW UK www.sphera.com
Declared/Functional Unit	1 tonne of carbon steel reinforcing bars manufactured by the secondary (scrap-based) production route
Applicability/Coverage	Manufacturer-specific product produced at a single plant of one manufacturer
EPD Type	Cradle to Gate with options, Modules C1-C4, and Module D
Background database	MLC (GaBi) Databases 2025.1 (Sphera, 2025)

Demonstration of Verification

CEN standard EN 15804 serves as the core PCR ^a

Independent verification of the declaration and data according to EN ISO 14025:2010

Internal External

(Where appropriate ^b) Third party verifier:
Dr Jane Anderson

a: Product category rules

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Environmental Product Declaration

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019/AC2021. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019/AC2021 for further guidance

Information modules covered

Product Stage			Construction Stage		Use Stage							End-of-life Stage				Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Decconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Note: Checks indicate the Information Modules declared.

Manufacturing site

Watani Iron Steel Limited Co.
3719 al Kharj Old - Hyt Dist.
Unit no 1
Riyadh, 14371-6448
Kingdom of Saudi Arabia

Construction Product:

Product Description

This EPD covers carbon steel reinforcing bars manufactured by Watani Iron Steel Limited Co. using the secondary (scrap-based) production route. Steel scrap is melted and refined in an Induction Furnace (IF), cast into billets, and hot rolled into reinforcing bars in accordance with the relevant product standards listed in the References section.

Reinforcing bars provide the tensile capacity that concrete lacks, enabling reinforced concrete to resist tension, bending, and cyclic loads while maintaining ductility and structural integrity. Their deformed surface ensures reliable bond and load transfer to the surrounding concrete in elements such as beams, slabs, columns, and foundations for buildings and civil engineering works.

Environmental Product Declaration

Technical Information

Property	Value, Unit
Production route	Scrap - EAF
Density	7850 kg/m ³
Modulus of elasticity	200 GPa
Carbon Equivalent (C.E.) (as per SASO ASTM SASO A706/706M)	max 0.55 %
Yield strength: SASO ASTM A615/A615M grades: Grade 40, Grade 60, Grade 80, Grade 100	min 280 MPa for Grade 40 min 420 MPa for Grade 60 min 550 MPa for Grade 80 min 690 MPa for Grade 100
SASO ASTM A706/A706M grades: Grade 60, Grade 80, Grade 100	min 420 – max 540 MPa for Grade 60 min 550 – max 675 MPa for Grade 80 min 690 – max 815 MPa for Grade 100
Ratio of actual tensile strength to actual yield strength SASO ASTM A615/A615M	min 1.10 for all grades
SASO ASTM A706/A706M	min 1.25 for Grade 60 and Grade 80 min 1.17 for Grade 100
Tensile strength: SASO ASTM A615/A615M grades: Grade 40, Grade 60, Grade 80, Grade 100	min 420 MPa for Grade 40 min 550 MPa for Grade 60 min 690 MPa for Grade 80 min 790 MPa for Grade 100
SASO ASTM A706/A706M grades: Grade 60, Grade 80, Grade 100	min 550 MPa for Grade 60 min 690 MPa for Grade 80 min 805 MPa for Grade 100
Elongation in 200mm (as per SASO ASTM A615/A615M and SASO ASTM A706/A706M requirements)	As per Table A1.2 for each size and grade
Bend test requirements (as per SASO ASTM A615/A615M and SASO ASTM A706/A706M requirements)	Pass
Recycled content (as per ISO 14021:2016/Amd:2021)	99.0 (Including internal and external scrap) 95.6 (Including external scrap only)

* Technical Information details are as per relevant product standards listed in References section.

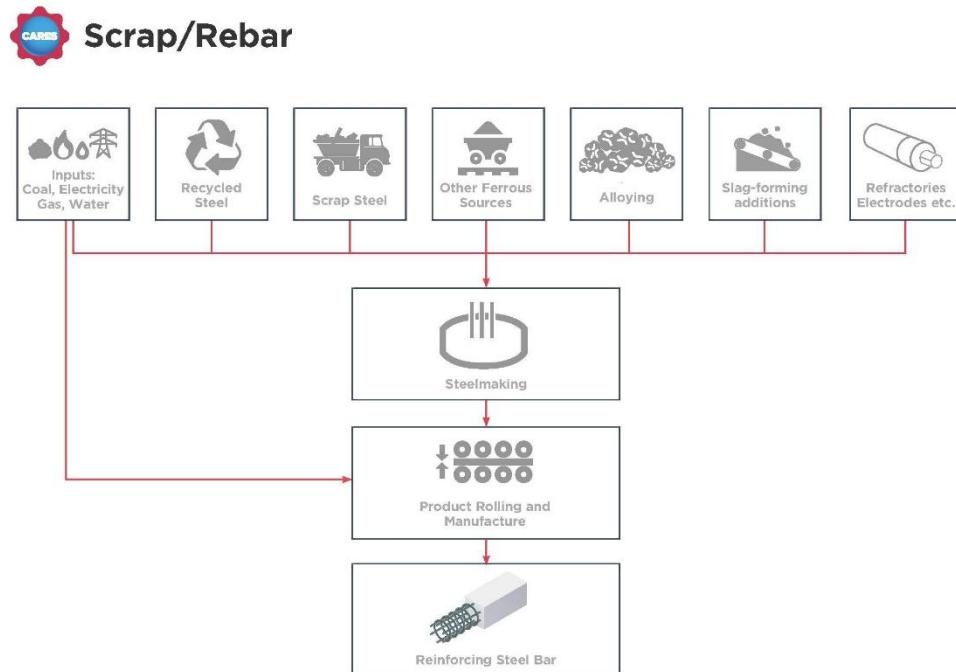
Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3

Manufacturing Process

Reinforcing steel bars at Watani Iron Steel Limited Co. are produced using the secondary (scrap-based) steelmaking route. Steel scrap is melted and refined in an Induction Furnace (IF), where impurities are removed and alloying elements are added to achieve the required chemical composition and mechanical properties.

The molten steel is then cast into billets through a continuous casting process. These billets are reheated and hot rolled into reinforcing bars of specified dimensions. Hot rolling imparts the final mechanical properties and creates the deformed surface pattern necessary for effective bonding with concrete.



Environmental Product Declaration

After rolling, the products undergo finishing and quality control, including cutting to length, bundling, and mechanical and dimensional testing to ensure compliance with relevant product standards.

The products are packaged by binding with steel wires or straps; both the steel ties and the products do not include any biogenic materials.

Process flow diagram

Construction Installation

Processing and proper use of reinforcing steel products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of reinforcing steel products the usual requirement for securing loads is to be observed.

Use Information

The composition of the reinforcing steel products does not change during use.

Reinforcing steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the reinforcing steel product itself.

End of Life

Reinforcing steel products are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for reinforcing steel products

Environmental Product Declaration

Life Cycle Assessment Calculation Rules

This EPD uses the "Cut-off by Classification" method, also known as the recycled content method. It assigns the environmental impacts of primary material production to the initial user. Recyclable materials enter the recycling process without burdens, and secondary materials only bear the impacts of recycling.

This method promotes recycling by making producers responsible for waste management. It supports a circular economy by reducing the environmental impacts of primary material production.

This approach follows ISO 14040 and ISO 14044 standards for Life Cycle Assessments.

The Life Cycle Impact Assessment (LCIA) has been carried out using the characterisation method described in EN 15804+A2. For all indicators the characterisation factors from the Environmental Footprint v3.1 (EF 3.1) was applied.

Declared unit description

1 tonne of carbon steel reinforcing bars manufactured by the secondary (scrap-based) production route.

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. Type of this EPD is Cradle to Gate with options, Modules C1-C4, and Module D.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources and Quality:

The selection of data and the data quality requirements have been provided according to the requirements of BS EN 15941:2024.

Data Sources: Manufacturing data of the high tensile steel strand products for the prestressing of concrete covering the period 01/01/2024 - 31/12/2024 has been provided by Watani Iron Steel Limited Co. operating on the geographical area noted in Manufacturing Site. A brief description of technology and inputs for the product is given in Manufacturing Process and in simplified Process Flow Diagram.

The primary data collection was thorough, considering all relevant flows and these data were verified by CARES, including also the verification of mass balance, to ensure that data for all the inputs and outputs for the process over the period of data collection have been collected, and that the unit process data will comply with the cut-off rules of EN 15804:2012+A2:2019/AC2021. The EPD covers transport to, and end-of-life in Kingdom of Saudi Arabia.

The selection of the background data for electricity generation is in line with the CARES PCR 2025. Country or region-specific power grid mixes are selected from MLC (GaBi) Databases 2025.1 (Sphera, 2025); thus, consumption grid mix of Malaysia has been selected to suit specific manufacturing location, and also for fabrication, installation and demolishing location. The emission factor of carbon footprint of the applied consumption grid mix of Kingdom of Saudi Arabia is 0.782 kg CO₂ eq/kWh.

Data Quality: Background data is consistently sourced from the MLC (GaBi) Databases 2025.1 (Sphera, 2025). The primary data collection was thorough, considering all relevant flows and these data have been verified during the audit conducted by CARES in November 2025.

There isn't any data from different LCI/LCA databases are used considering that the overall consistency of the study is not adversely affected.

Schemes applied for data quality assessment was as per EN 15804:2012+A2:2019/AC2021, Annex E, Table E.1 — Data quality level and criteria of the UN Environment Global Guidance on LCA database development. No poor or very poor data was found during the assessment of relevant data.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness	: Good
Technical Representativeness	: Very good
Time Representativeness	: Good

Environmental Product Declaration

Allocation:

Electric Arc Furnace slag and mill scale are produced as co-products from the steel manufacturing processes. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from both mill scale, and induction furnace slag are 0.02% and 0.03% respectively, and their total is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the MLC (GaBi) Databases 2025.1 (Sphera, 2025).

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the PCR requirements are fulfilled).

The mass of steel wire or strap used for binding the product bundle is less than 1 % of the total mass of the product.

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Core environmental impact indicators									
Life Cycle Stage	Impact Category	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP-freshwater	
		kg CO ₂ eq	kg CFC11 eq	mol H ⁺ eq	Kg P eq				
Product stage	Raw material supply	A1	80.7	81.3	-0.684	0.097	1.59E-10	0.546	5.55E-05
	Transport	A2	9.05	8.95	0.017	0.088	1.07E-12	0.034	2.32E-05
	Manufacturing	A3	729	729	0.06	0.011	1.50E-10	10.2	7.34E-05
	Total (of product stage)	A1-3	8.19E+02	8.19E+02	-0.609	0.20	3.10E-10	10.78	1.52E-04
Construction process stage	Transport	A4	25.4	25.1	0.048	0.266	3.04E-12	0.038	6.96E-05
	Construction	A5	97.5	97.4	-0.050	0.077	3.30E-11	1.29	3.03E-05
Use stage	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0	0
	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0	0
	%92 Recycling / %8 Landfill Scenario								
End of life	Deconstruction, demolition	C1	2.09	2.09	8.33E-04	6.83E-05	1.62E-13	0.012	2.52E-07
	Transport	C2	48.4	47.8	0.090	0.477	5.75E-12	0.120	1.26E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1.23	1.22	3.96E-05	0.005	3.40E-12	0.009	1.82E-06
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	197	197	-0.046	0.096	1.00E-10	0.452	6.87E-05
100% Landfill Scenario									
End of life	Deconstruction, demolition	C1	2.09	2.09	8.33E-04	6.83E-05	1.62E-13	0.012	2.52E-07
	Transport	C2	2.23	2.20	0.004	0.023	2.67E-13	0.003	6.11E-06
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	15.3	15.3	4.95E-04	0.063	4.25E-11	0.108	2.27E-05
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	2.20E+03	2.20E+03	-0.515	1.08	1.12E-09	5.07	7.70E-04
100% Recycling Scenario									
End of life	Deconstruction, demolition	C1	2.09	2.09	8.33E-04	6.83E-05	1.62E-13	0.012	2.52E-07
	Transport	C2	52.4	51.8	0.097	0.516	6.22E-12	0.131	1.36E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	22.0	22.0	-0.005	0.011	1.12E-11	0.051	7.70E-06

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil;

GWP-biogenic = Global warming potential, biogenic;

GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer;

AP = Acidification potential, accumulated exceedance; and

EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Core environmental impact indicators

Life Cycle Stage	Impact Category	EP-marine	EP-terrestrial	POCP	ADP-mineral & metals	ADP-fossil	WDP	
		kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m³ world eq deprived	
Product stage	Raw material supply	A1	0.078	0.858	0.224	4.63E-05	835	12.4
	Transport	A2	0.010	0.109	0.025	5.83E-07	116	0.035
	Manufacturing	A3	0.870	9.52	2.91	3.03E-06	1.07E+04	24.5
	Total (of product stage)	A1-3	0.958	10.5	3.16	4.99E-05	1.17E+04	36.9
Construction process stage	Transport	A4	0.016	0.164	0.033	1.71E-06	329	0.103
	Construction	A5	0.115	1.25	0.374	5.36E-06	1.41E+03	4.25
Use stage	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0
	Replacement	B4	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0

%92 Recycling / %8 Landfill Scenario

End of life	Deconstruction, demolition	C1	4.08E-03	0.045	0.011	2.94E-08	27.7	0.016
	Transport	C2	0.054	0.580	0.129	3.15E-06	626	0.191
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0.002	0.025	0.007	7.57E-08	16.0	0.132
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.109	1.17	0.365	1.95E-06	1.49E+03	1.38

100% Landfill Scenario

End of life	Deconstruction, demolition	C1	4.08E-03	0.045	0.011	2.94E-08	27.7	0.016
	Transport	C2	1.40E-03	0.015	0.003	1.50E-07	28.8	0.009
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0.028	0.308	0.085	9.46E-07	200	1.65
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.22	13.1	4.09	2.18E-05	1.67E+04	15.5

100% Recycling Scenario

End of life	Deconstruction, demolition	C1	4.08E-03	0.045	0.011	2.94E-08	27.7	0.016
	Transport	C2	0.058	0.630	0.140	3.41E-06	678	0.207
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.012	0.131	0.041	2.18E-07	167	0.155

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer;

WDP = Water (user) deprivation potential, deprivation-weighted water consumption.

The results of the three environmental impact indicators above shall be used with care as the uncertainties on these results are high or as there is limited experienced with these indicators.

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone;

PM = Particulate matter.

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing environmental impacts

Life Cycle Stage	Impact Category	PM	IRP	ETP-fw	HTP-c	HTP-nc	SQP	
		disease incidence	kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless	
Product stage	Raw material supply	A1	4.68E-06	1.23	191	9.96E-09	4.20E-07	384
	Transport	A2	4.94E-07	0.021	147	1.98E-09	1.09E-07	48.4
	Manufacturing	A3	8.26E-05	0.241	4.15E+03	2.73E-07	1.87E-06	11.5
	Total (of product stage)	A1-3	8.78E-05	1.49	4.49E+03	2.85E-07	2.40E-06	4.44E+02
Construction process stage	Transport	A4	3.76E-07	0.060	426	5.73E-09	3.23E-07	146
	Construction	A5	1.05E-05	0.214	593	2.92E-08	3.48E-07	79.1
Use stage	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0
	Replacement	B4	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0

%92 Recycling / %8 Landfill Scenario

End of life	Deconstruction, demolition	C1	7.82E-08	5.77E-04	32.9	5.92E-10	7.53E-09	0.036
	Transport	C2	1.45E-06	0.113	792	1.07E-08	5.87E-07	262
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	1.08E-07	0.019	13.8	2.13E-10	7.98E-09	3.96
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	6.66E-06	-2.58	232	3.13E-07	-2.38E-07	-121

100% Landfill Scenario

End of life	Deconstruction, demolition	C1	7.82E-08	5.77E-04	32.9	5.92E-10	7.53E-09	0.036
	Transport	C2	3.23E-08	0.005	37.4	5.03E-10	2.84E-08	12.8
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	1.35E-06	0.235	173	2.67E-09	9.98E-08	49.5
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	7.47E-05	-29.0	2.61E+03	3.51E-06	-2.66E-06	-1.35E+03

100% Recycling Scenario

End of life	Deconstruction, demolition	C1	7.82E-08	5.77E-04	32.9	5.92E-10	7.53E-09	0.036
	Transport	C2	1.57E-06	0.123	858	1.16E-08	6.36E-07	284
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	7.47E-07	-0.290	26.1	3.51E-08	-2.66E-08	-13.5

IRP = Potential human exposure efficiency relative to U235; This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

HTP-nc = Potential comparative toxic unit for humans; and
ETP-fw = Potential comparative toxic unit for ecosystems;
HTP-c = Potential comparative toxic unit for humans;
SQP = Potential soil quality index.

The results of the four environmental impact indicators above shall be used with care as the uncertainties on these results are high or as there is limited experienced with these indicators.

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use								
Life Cycle Stage	Impact Category		PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
Product stage	Raw material supply	A1	126	0	126	835	0	835
	Transport	A2	8.05	0	8.05	116	0	116
	Manufacturing	A3	56.7	0	56.7	1.07E+04	0	1.07E+04
	Total (of product stage)	A1-3	1.91E+02	0	1.91E+02	1.17E+04	0	1.17E+04
Construction process stage	Transport	A4	24.2	0	24.2	329	0	329
	Construction	A5	30.0	0	30.0	1.41E+03	0	1.41E+03
Use stage	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0
	Replacement	B4	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %8 Landfill Scenario								
End of life	Deconstruction, demolition	C1	0.056	0	0.056	27.7	0	27.7
	Transport	C2	43.6	0	43.6	626	0	626
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	3.09	0	3.09	16.0	0	16.0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-235	0	-235	1.49E+03	0	1.49E+03
100% Landfill Scenario								
End of life	Deconstruction, demolition	C1	0.056	0	0.056	27.7	0	27.7
	Transport	C2	2.12	0	2.12	28.8	0	28.8
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	38.7	0	38.7	200	0	200
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.63E+03	0	-2.63E+03	1.67E+04	0	1.67E+04
100% Recycling Scenario								
End of life	Deconstruction, demolition	C1	0.056	0	0.056	27.7	0	27.7
	Transport	C2	47.2	0	47.2	678	0	678
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-26.3	0	-26.3	167	0	167

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials;

PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters describing resource use						
Life Cycle Stage	Impact Category	SM	RSF	NRSF	FW	
		kg	MJ net calorific value	MJ net calorific value	m ³	
Product stage	Raw material supply	A1	0	0	0	0.335
	Transport	A2	0	0	0	0.004
	Manufacturing	A3	1.07E+03	0	0	1.57
	Total (of product stage)	A1-3	1.07E+03	0	0	1.91
Construction process stage	Transport	A4	0	0	0	0.012
	Construction	A5	108	0	0	0.205
Use stage	Use	B1	0	0	0	0
	Maintenance	B2	0	0	0	0
	Repair	B3	0	0	0	0
	Replacement	B4	0	0	0	0
	Refurbishment	B5	0	0	0	0
	Operational energy use	B6	0	0	0	0
	Operational water use	B7	0	0	0	0
%92 Recycling / %8 Landfill Scenario						
End of life	Deconstruction, demolition	C1	0	0	0	4.04E-04
	Transport	C2	0	0	0	0.021
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0.004
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.03E+03	0	0	0.114
100% Landfill Scenario						
End of life	Deconstruction, demolition	C1	0	0	0	4.04E-04
	Transport	C2	0	0	0	1.02E-03
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0.048
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	1.28
100% Recycling Scenario						
End of life	Deconstruction, demolition	C1	0	0	0	4.04E-04
	Transport	C2	0	0	0	0.023
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.12E+03	0	0	0.013

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels;

FW = Net use of fresh water

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environmental information describing waste categories					
Life Cycle Stage	Impact Category	HWD	NHWD	RWD	
		kg	kg	kg	
Product stage	Raw material supply	A1	2.19E-07	0.801	0.015
	Transport	A2	4.20E-09	0.015	1.52E-04
	Manufacturing	A3	1.01E-07	13.1	0.002
	Total (of product stage)	A1-3	3.24E-07	13.9	0.017
Construction process stage	Transport	A4	1.19E-08	0.043	4.32E-04
	Construction	A5	4.70E-08	11.1	0.002
Use stage	Use	B1	0	0	0
	Maintenance	B2	0	0	0
	Repair	B3	0	0	0
	Replacement	B4	0	0	0
	Refurbishment	B5	0	0	0
	Operational energy use	B6	0	0	0
	Operational water use	B7	0	0	0
%92 Recycling / %8 Landfill Scenario					
End of life	Deconstruction, demolition	C1	4.71E-10	0.004	7.85E-06
	Transport	C2	2.26E-08	0.081	8.18E-04
	Waste processing	C3	0	0	0
	Disposal	C4	3.51E-09	80.1	1.70E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.58E-07	3.02	-0.025
100% Landfill Scenario					
End of life	Deconstruction, demolition	C1	4.71E-10	0.004	7.85E-06
	Transport	C2	1.04E-09	0.004	3.80E-05
	Waste processing	C3	0	0	0
	Disposal	C4	4.38E-08	1.00E+03	0.002
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-6.25E-06	33.9	-0.277
100% Recycling Scenario					
End of life	Deconstruction, demolition	C1	4.71E-10	0.004	7.85E-06
	Transport	C2	2.45E-08	0.087	8.86E-04
	Waste processing	C3	0	0	0
	Disposal	C4	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-6.25E-08	0.339	-0.003

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

Environmental Product Declaration

LCA Results

(ND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Other environmental information describing output flows – at end of life

Life Cycle Stage	Impact Category	CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
		kg	kg	kg	MJ per energy carrier	kg C	kg C
Product stage	Raw material supply	A1	0	0	0	0	0
	Transport	A2	0	0	0	0	0
	Manufacturing	A3	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0
Construction process stage	Transport	A4	0	0	0	0	0
	Construction	A5	0	1.12E+02	0	0	0
Use stage	Use	B1	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0
	Repair	B3	0	0	0	0	0
	Replacement	B4	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0

%92 Recycling / %8 Landfill Scenario

End of life	Deconstruction, demolition	C1	0	920	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

100% Landfill Scenario

End of life	Deconstruction, demolition	C1	0	0	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

100% Recycling Scenario

End of life	Deconstruction, demolition	C1	0	1.00E+03	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse;

MFR = Materials for recycling

MER = Materials for energy recovery;

EE = Exported Energy

Environmental Product Declaration

Scenarios and additional technical information

Scenarios and additional technical information			
Scenario	Parameter	Units	Results
Module A4 Transport to the Building Site	On leaving the steelworks the reinforcing steel products are transported to a fabricator where they are converted into constructional steel forms suitable for the installation site, then transported on to the construction site, including provision of all materials and products. Road transport distance for rolled steel to fabricators and road transport distance for steel construction forms to site are assumed to be 100 km and 250 km, respectively. Only the one-way distance is considered as it is assumed that the logistics companies will optimise their distribution and not return empty in modules beyond A3.		
	Truck trailer - Fuel	litre/km	1.56
	Distance	km	350
	Capacity utilisation (including empty returns)	%	61
	Bulk density of transported products	kg/m ³	7850
Module A5 Installation in the Building	The fabrication process is a relatively simple unit process and accounts for the transformation of the rolled steel product into construction steel forms. The operations in this unit process are primarily cutting and welding. As such, other inputs to the process include electricity, thermal energy, and cutting gases. Other outputs of this process are steel scrap and wastewater (where applicable). Consumption grid mix of Kingdom of Saudi Arabia has been selected to suit specific fabrication and installation location.		
	Fabrication into structural steel products and installation in the building; including provision of all materials, products, and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction stage. Installation of the fabricated product into the building is assumed to result in 10% wastage (determined based on typical installation losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assumed that fabrication requires 15.34 kWh/tonne finished product, and that there is a 2% wastage associated with this process.		
	Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms	%	2
	Energy Use - Energy per tonne required to fabricate construction steel forms	kWh	15.34
	Waste materials from installation wastage	%	10
Module B2 Maintenance	No maintenance required.		
Module B3 Repair	No repair process required.		
Module B4 Replacement	No replacement considerations required.		
Module B5 Refurbishment	No refurbishment process required.		
Reference Service Life	Reinforcing steel products are used in the main building structure so the reference service life will equal the lifetime of the building. BS EN 1990 specifies "building structures and other common structures" as having a lifetime of 50 years. On this basis, the RSL for this EPD is assumed to be 50 years.		
Module B6 Use of Energy	No energy required during use stage related to the operation of the building.		
Module B7 Use of Water	No water required during use stage related to the operation of the building.		
Modules C1 to C4 End of life	The end-of-life stage starts when the construction product is replaced, dismantled or deconstructed from the building or construction works and does not provide any further function. The recovered steel is transported for recycling while a small portion is assumed to be unrecoverable and remains in the rubble which is sent to landfill. 92% of the high-tensile prestressed steel strand is assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTION.INFO 2012]. The EPD covers transport to, and end-of-life in Kingdom of Saudi Arabia. Once steel scrap is generated through the deconstruction activities on the demolition site it is considered to have reached the "end of waste" state. No further processing is required so there are no impacts associated with this module. Hence no impacts are reported in module C3.		
	Waste for recycling - Recovered steel from crushed concrete	%	92
	Waste for energy recovery - Energy recovery is not considered for this study as most end-of-life steel scrap is recycled, while the remainder is landfilled	-	-
	Waste for final disposal - Unrecoverable steel lost in crushed concrete and sent to landfill	%	8
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56
	Transport to waste processing by Truck - Distance	km	463
	Transport to waste processing by Truck - Capacity utilisation	%	61
	Transport to waste processing by Truck – Density of Product	kg/m ³	7850

Environmental Product Declaration

Scenarios and additional technical information

Scenario	Parameter	Units	Results
Module D	Transport to waste processing by Container ship - Fuel consumption	litre/km	0.0041
	Transport to waste processing by Container ship - Distance	km	158
	Transport to waste processing by Container ship – Capacity utilisation	%	53
	Transport to waste processing by Container ship – Density of Product	kg/m ³	7850
<p>It is assumed that 92% of the steel used in the structure is recovered for recycling, while the remainder is landfilled. "Benefits and loads beyond the system boundary" (module D) accounts for the environmental benefits and loads resulting from net steel scrap that is used as raw material in the steel plant and that is collected for recycling at end of life. The balance between total scrap arisings recycled from fabrication, installation and end of life and scrap consumed by the manufacturing process (internally sourced scrap is not included in this calculation). These benefits and loads are calculated by including the burdens of recycling and the benefit of avoided primary production.</p> <p>This study is concerned with the secondary production route, and more scrap is required as input to the system than is recovered at end of life. The net effect of this is that module D mainly models the burdens associated with the scrap input (secondary material) to the steelmaking process.</p> <p>The resulting scrap credit/burden is calculated based on the global "value of scrap" approach (/worldsteel 2011).</p>			
Recycled Content	kg	956	
Re-used Content	kg	0	
Recovered for recycling	kg	920	
Recovered for re-use	kg	0	
Recovered for energy	kg	0	

Summary, comments and additional information

Interpretation

Scrap based reinforcing steel product of Watani Iron Steel Limited Co. is made via the Induction Furnace production route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804:2012+A2:2019/AC2021.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

Global Warming Potential (GWP)

The majority of the life cycle GWP impact occurs in the production phase (A1-A3). A1-A3 impacts account for 83.51% overall life cycle impacts for this category. The most significant contributions to production phase impacts are the upstream production of raw materials used in the steelmaking process, generation/supply of electricity and the production/use of fuels on site. Fabrication, installation and the end-of-life processes covered in C1-C4 make a minimal contribution to GWP. For overall climate change impacts, carbon dioxide emissions account for the majority of impacts with methane being the second most significant contributor.

Ozone Depletion Potential (ODP)

The majority of impacts are associated with the production phase (A1-3). Significant contributions to production phase impact come from the emission of ozone depleting substances during the upstream production of raw materials/pre-products as well as those arising from electricity production. Module D shows a very small credit even though scrap burdens are being assessed in this phase. This is explained because ODP emissions are linked to grid electricity production used.

Acidification Potential (AP)

Acidification potential is generally driven by the production of sulphur dioxide and nitrogen oxides through the combustion of fossil fuels, particularly coal and crude oil products. The majority of the lifecycle AP impact occurs in the production phase (A1-A3), similar to GWP. The major contributors to production phase AP impacts comes from energy resources used in the production of the raw materials and pre-products for the steelmaking process and from transportation. Fabrication, installation and the end-of-life processes classed under C1-C4 make minimal contributions.

Eutrophication Potential (EP)

Eutrophication is driven by nitrogen and phosphorus containing emissions and as with GWP and AP is often strongly linked with the use of fossil fuels. The major eutrophication impacts occur in the production phase (A1-A3). Significant contributions to production phase impact comes from the production of raw materials and transport. Fabrication, installation and the end-of-life processes classed under C1-C4 again make minimal contributions.

Photochemical Ozone Creation Potential (POCP)

POCP tends to be driven by emissions of carbon monoxide, nitrogen oxides (NOx), sulphur dioxide and NMVOCs. The production phase is the dominant phase of the lifecycle with regards to POCP impacts. Again, these are all emissions commonly associated with the combustion of fuels. Significant contributors to POCP are the upstream production of raw materials/pre-products and transport, directly linked to fossil fuel combustion. It should be noted that the impacts for steel recycling in module D is almost of the same magnitude as the production phase impacts.

Environmental Product Declaration

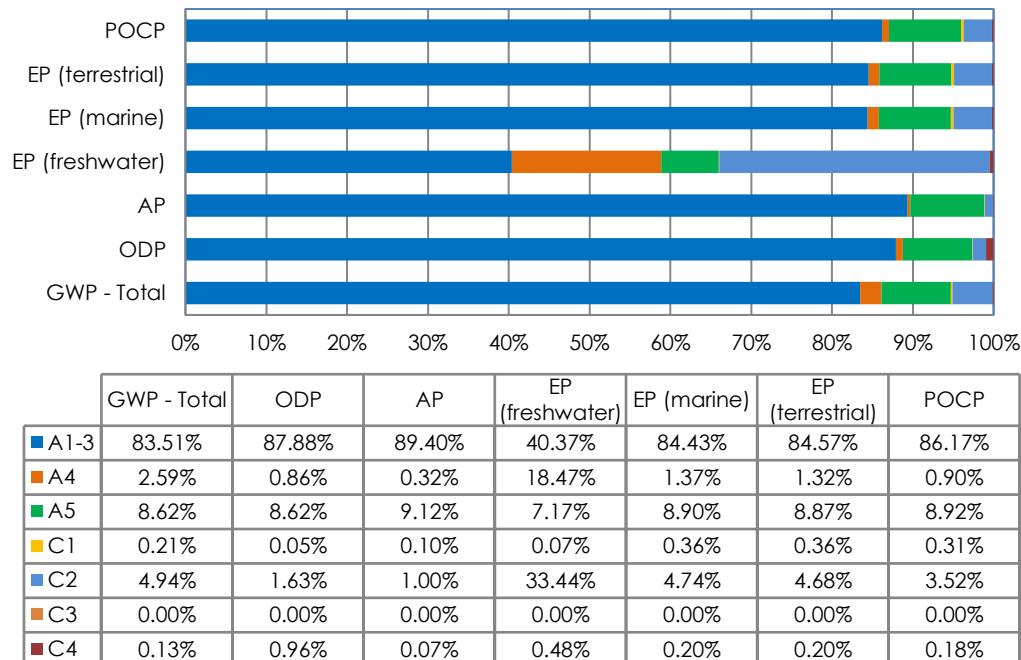


Figure 1 - shows the relative contribution of each life cycle stage to different environmental indicators for the carbon steel reinforcing bar products manufactured by the secondary (scrap based) production route

Production Stage Contribution Analysis

Scope & indicator:

This analysis explains the production stage A1–A3 using Climate change – total (GWP-total) for the declared unit. It is an interpretive view of hotspots; the module-level tables in LCA Results remain the authoritative values.

Method: EN 15804+A2; CFs: EN 15804 reference package EF 3.1.

Results and reconciliation:

Values represent A1–A3 only. The sum of step contributions equals the A1–A3 Climate change – total reported in the LCA Results tables. Process steps are analytical groupings within A1–A3 and are provided for interpretation; the module-level values remain the authoritative results in the EPD.

Manufacturing Process Step	GWP-total kg CO ₂ eq	Share of A1–A3 %
Steelmaking	628	76.7
Rolling	191	23.3
Total (A1-A3)	819	100.0

Environmental Product Declaration

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. EN 15804:2012+A2:2019/AC2021. London, BSI, 2019.

BSI. Environmental labels and declarations. Self-declared environmental claims (Type II environmental labelling). BS EN ISO 14021:2016+A1:2021. London, BSI, 2022

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

BSI. Sustainability of construction works. Data quality for environmental assessment of products and construction work. Selection and use of data. BS EN 15941:2024. London, 2024.

BSI. Sustainability of construction works. Environmental product declarations. Communication format business-to-business. BS EN 15942:2021. London, 2021.

BSI. Eurocode. Basis of structural and geotechnical design. BS EN 1990:2023. London, 2023.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

The Concrete Society, [Design working life \(concrete.org.uk\)](http://concrete.org.uk)

CARES: Product Category Rules (PCR) for Type III Environmental Product Declaration (EPD) of Semi-Finished and Finished Steel Products, Issue/Revision Date: February 2025

LCA for Experts (LCA FE) Software System and Managed Life cycle Content (MLC) Database for Life Cycle Engineering, Sphera Solutions GmbH, Leinfelden-Echterdingen, <https://lcadatabase.sphera.com/>, 2025

International Energy Agency (IEA) – Electricity grids and secure energy transitions: Enhancing the foundations of resilient, sustainable and affordable power systems, 2023), <https://iea.blob.core.windows.net/assets/ea2ff609-8180-4312-8de9-494bcf21696d/ElectricityGridsandSecureEnergyTransitions.pdf>

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U.S. Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012
http://www.steelconstruction.info/The_recycling_and_reuse_survey

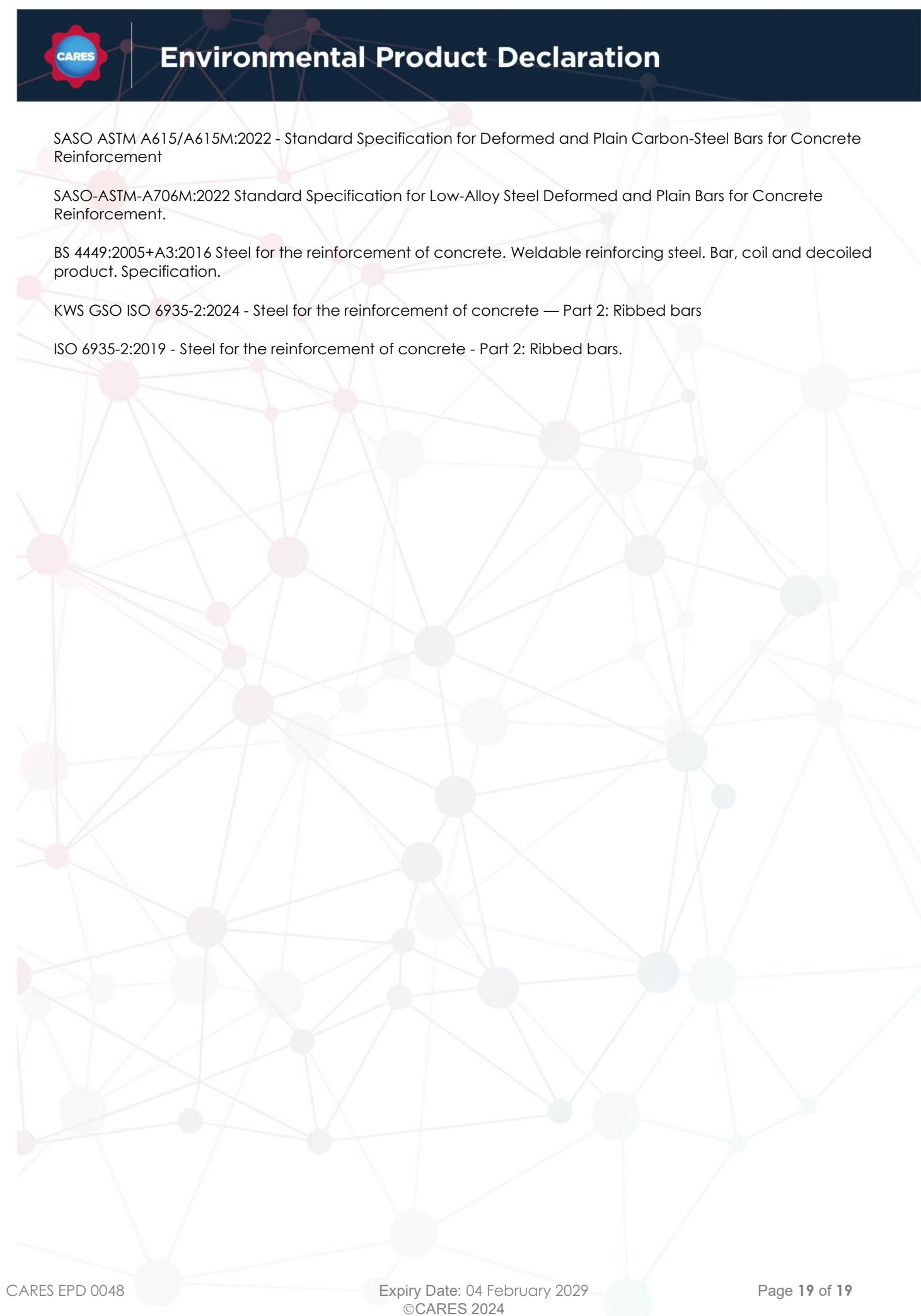
Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

WRAP Net Waste Tool, Waste & Resources Action Programme (WRAP), 2013 [No longer available; formerly at www.wrap.org.uk/nwtool]

worldsteel Association - Life cycle inventory methodology report for steel products, 2017

Environmental Product Declaration


SASO ASTM A615/A615M:2022 - Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

SASO-ASTM-A706M:2022 Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

BS 4449:2005+A3:2016 Steel for the reinforcement of concrete. Weldable reinforcing steel. Bar, coil and decoiled product. Specification.

KWS GSO ISO 6935-2:2024 - Steel for the reinforcement of concrete — Part 2: Ribbed bars

ISO 6935-2:2019 - Steel for the reinforcement of concrete - Part 2: Ribbed bars.

